WBS 4.2-3
Knowledge Base Management Systems Study

Report #2

[ER PR

m The limitations contained in this légend »uvwill be
considered void after September 28, 1988, T

Napkadean adliBeraproduct o BT™tIrt s o b

Prepared under Contract NAS1-17555 by
Boeing Commercial Airplane Company
P.0. Box 3707
Seattle, Washington 98124

for

Langley Research Center
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

ONGiINAL PAGE B
OF POOR QUALITY

Prepared by:

%)B @CUJW\/— Date: ?/)’S//g Y

S. Baum

M) AL b, Date: Q/Qf/ff

W. J.McClay <—f T
o 3 /K) :,_224 Z’v'
Y. N WAy ars Date: 4
~S. J. Lee .) - * '

Responsible Manager:

j[/&%_, Date: 7/2,5;/3/;//

H. R. Jghnson

Approved by:

S, - L
(./ LT ~7 /._/L{':'_‘,wv ’ Date: -

W. A. Bryant

-ii-

TABLE OF CONTENTS

DESCRIPTION

1.0

INTRODUCTION ottt ieeenoeecennscncensencnsoncsnssnns

1.1 THE MOTIVATION FOR THE KNOWLEDGE BASE
MANAGEMENT SYSTEM .. eerereeeronennssncaasoncans

1.2 KBMS THROUGH INTEGRATION OF DBMS
AND AI TECHNOLOGIES ...t tetiteeeennsosenesncanss

1.3 APPROACHES TO INTEGRATION OF
THE TECHNOLOGIESieieeeernenennnsnossascnsss

USER INTERFACE ... ittt ieneeeieencenaccsoaaonsssnnns

KNOWLEDGE REPRESENTATIONSicitiiitiiiennennrnasnnn
3.1 PRODUCTION RULES ... utiitieeeereeesnoccnncnnanss
3.2 SEMANTIC NETS .. ittt eeeeecsosesonsssnssseansas
3.3 FRAMES ittt ittt neneaosnsaanansonnnns
3.4 DEMONS AND PROCEDURAL ATTACHMENTc.ceeeveses

3.5 MULTIPLE KNOWLEDGE REPRESENTATIONS

PERSPECTIVES OF KNOWLEDGEceiiietiiieaennecennns

-iii-

20
23
25
25

27

1.0 INTRODUCTION

This report represents initial findings of IPAD research into the
feasibility and desirability of achieving a knowledge base
management system for engineers by integrating data base and
artificial intelligence technologies.

Principal issues in this regard include the following:

a) If and how various knowledge representations can be
accommodated using current and/or extended data base
techniques

b) how well-understood data base management techniques can
be exploited in order to provide more sophistication, power
and utility for a knowledge-based system tool

¢) how the full capability of AI inferencing can be
integrated with semantic capabilities of DBMS technology

d) how other Knowledge base functions such as
explanation/justification reporting and handling certainty
factors can be integrated 1into the extended data Dbase
architecture

1.1 THE MOTIVATION FOR THE KNOWLEDGE BASE MANAGEMENT SYSTEM

Currently, AI applications are developed as isolated projects.
While the same AI language or expert system building tool might
be used from one application to the next, there is no attempt to
make the knowledge or facts captured by one system sharable with
others. There is no common repository of rules or frames or
logical assertions. Also, facts which are entered into one system
by the end user may duplicate facts already captured in other
systems or perhaps in some data base. This causes concern not
only because of the duplication of effort and wasted computer
resources, but also it creates a maintenance problem as well as a
consistency problem if the data is subject to change. In the
future, the capability for sharing knowledge among applications
will be a requirement along with clean and effective access to
data in various data bases.

Knowledge sharing and more ambitious applications will result in
knowledge bases that are much larger than current AI tools are
able to handle. Most current tools base their search strategies
on the assumption that all of the knowledge and facts reside in
main memory. This assumption will face serious challenge in the
future as the need for very large integrated knowledge bases come
to prominence. Accordingly, search strategies will need to be
much more sophisticated than is currently the case. Managing a
very large number of facts such as would be contained in a large
scale

data base is a challenge which has not seriously been addressed
by the AI community.

1.2 KBMS THROUGH INTEGRATION OF DBMS AND AI TECHNOLOGIES

There is a huge vendor and customer investment in DBMS software
and applications. In the future these vendors and customers will
wish to take advantage of the sephisticated inferencing
capabilities provided by AI technology. And as the investment in
and application of AI technology grows, there will be a
corresponding push to take advantage of the sophisticated data
management capabilities provided by DBMS technologies. It is the
combined strength of AI and DBMS technologies which will provide
knowledge base management capabilities.

Systems have been proposed which would interface an expert system
to a data base management system. The expert system would be
able to obtain facts from the data base and get answers to
queries about data in the data base through interfacing
procedures which would be invokable through clauses in rules. At
best, this provides only a loose coupling with the data base,
placing an unnatural division between knowledge contained in the
form of rules or frames, etc. in the expert system and knowledge
in the form of data semantics (e.g. relationships, constraints,
and system generated actions) described in the data dictionary of
the data base. This division c¢ould result in gaps or incon-
sistencies in knowledge and consequent inferencing. For example,
how would the knowledge of the AI subsystem be aware of that of
the DBMS subsystem and vice versa. For reasons of efficiency as
well as for the sake of making ©progress towards more
sophisticated tools for the management of both Kknowledge and
data, the integrated approach seems more reasonable in that it
provides a common facility which incorporates in a uniform and
consistent way the strengths of both technologies.

1.3 APPROACHES TO INTEGRATION OF THE TECHNOLOGIES

Managing large quantities of data, providing views of and shared
access to data, enforcement of constraints, propagated actions,

concurrency control, and efficient access methods are
capabilities which are currently provided by DBMS technology.
This offers a solid foundation upon which to build. Indeed

enhancement and application of this technology to achieve general
purpose knowledge base management system technology 1is a very
attractive approach to those vendors and customers currently
invested in DBMS technology and applications.

Similiarly, a case can be made for using AI technology for the
departure point for KBMS technology; an approach which might
incorporate DBMS capabilities into AI products. A third approach
would be to begin anew, selecting features and implementation
mechanisms from both AI and DBMS technologies as appropriate. No
doubt each approach will be pursued.

-2~

This paper focuses on an evolutionary approach which is based in
DBMS technology. That is, it assumes DMBS technology as a base
and attempts to identify functional commonality and disparity
between DBMS and AI technologies, and then takes commonality into
account in the integration of the two. However, many of the
issues that are discussed should be considered in any effort to
merge the two technologies.

Dealing with commonality may result in a common implementation of
some features, or it may result in redundant, but consistent and
coordinated implementation of others. A tightly coupled
implementation of inferencing and query/view processing, for
example, might result in a single very efficient and powerful
KBMS capability. Ignoring commonality may result in duplication
of effort, unnecessarily complicated user interfaces, and worst
of all, gaps or inconsistencies within the knowledge processing
capabilities of the system.

Another issue in the evolutionary approach to the integration of
DBMS and AI technologies is that of upward compatibility. If the
KBMS is to be built upon an existing DBMS, then it might be
desirable to add capabilities in a way that preserves user
interfaces and/or operational semantics. The issues are
considered at various points in this paper.

2.0 USER INTERFACE

There are many criteria which might shape user interfaces. Some
of these are the following.

o] Upward compatibility with existing DBMS interfaces.
o) Uniformity of particular classes of declarations.
0 Layering of capabilities.

In the following we use DBMS interfaces (DDL/DML data description
language/data manipulation language) as a basis for discussion.
In this context some of the above criteria may conflict. For
example, Section 3.1 demonstrates that CODASYL set/foreign key
relationships between record types may be expressed in the form
of production rules. Upward compatibility with DBMS interfaces
would argue for declaration of these relationships using
conventional syntax in addition to syntax for declaring other
types of production rules. Uniformity would argue for declaring
all rules, including these relationships, using a single
production rule-oriented syntax. A middle ground, would allow
either style of declaration to be used. Some of these options
are discussed in the following sections.

KBMS capabilities might be layered. For example one 1level of
capability might offer selected classes of production rules,
while another 1level of capability might offer additional rules,
etc. Adding capability for handling knowledge in the popular AI
representations of rules or frames need not alter the underlying
DBMS philosphy that knowledge about the problem domain be
expressed by means of the DDL and be maintained in the data
dictionary. This is not to say that knowledge declarations must
be fixed in advance and not be alterable interactively when the
system is in use. Indeed, some DBMS's currently support dynamic
DDL.

In some DBMS's (e.g. SQL) DDL and DML are unified - a single
language in which query and view of the knowledge/data structures
are practically the same. To extend such a data model to provide
KBMS functionality would probably result in a user interface in
which knowledge is declared and invoked in a uniform fashion.

For those who would see greater advantage to the more typical AI
approach to user interface, of course it would always be possible
to adopt a lamda calculus or first-order logic approach which
would embody DBMS functionality. Both DBMS and AlI-oriented
interfaces might be offered.

3.0 KNOWLEDGE REPRESENTATIONS

In this section some of the issues regarding support for
knowledge representations are discussed with respect to their
incorporation in data base management systems.

One important issue is that of commonality or close ties between
DBMS and AI capabilities. For example, as noted in Section 2.1,
DBMS-supported relationships between records are closely related

to production rules. Since real world DBMS applications may
involve hundreds of relationships, this connection should not be
overlooked. To do so would risk overlooking vast amounts of

knowledge in current systems, or in dealing with this knowledge
Separately from additional knowledge specified as production
rules. Section 3.1 goes even further to show that relationships
can be translated to production rules. This fact has many
ramifications in regard to implementation of user interface and
implementation mechanisms for inferencing. For example, a single
mechanism might be used to support both types of knowledge; and
some of the DBMS technology for supporting relationships might be
applied to implementation of the KBMS inferencing mechanism.

The correlation between frame technology and DBMS technology
seems rather straight forward. On the surface, semantic network
technology also seems closely related to DBMS technology.
However, there seems to be some rather subtle, but significant
differences. This situation gives rise to additional
considerations regarding integration of DBMS and AI technologies.

3.1 PRODUCTION RULES
According to Rich [1], a production rule system consists of:

. A set of rules, each consisting of a left side (a
pattern) that determines the applicability of the rule,
and a right side that describes the action to be
performed if the rule is applied.

. One or more databases that contain whatever information
is appropriate for the particular task. Some parts of
the database may be permanent, while other parts of it
may pertain only to the solution of the current
problem. The information in these databases may be
structured in any appropriate way.

. A control strategy that specifies the order in which
the rules will be compared to the database and a way of
resolving the conflicts that arise when several rules
match at once.

The left side of a rule is often called the condition side, and
the right hand, the action side.

-5-

The data dictionary of a DBMS contains knowledge about data base
data in the form of descriptions of relations and relationships,
constraints, rules for computing virtual attributes and for
propagation of user initiated modification or deletion, etc. This
knowledge 1is supplied via statements of a data description
language (DDL). Much of this knowledge can be and is for some
DBMSs stated as rules. The following are examples in pseudo-DDL
of rules which might be declared using actual DBMSs today:

1. IF VALUE OF PERSON-ID NOT UNIQUE THEN REJECT STORE OF
PERSON RECORD.

2. IF DEPT-NO OF DEPARTMENT CHANGES THEN COPY NEW VALUE TO
DEPT-NO OF EMPLOYEE FOR ALL EMPLOYEES OF THE
DEPARTMENT. '

3. IF DEPT-NO OF EMPLOYEE CHANGES THEN COPY NEW VALUE TO
DEPT-NO OF DEPENDENT FOR ALL DEPENDENTS OF THE
EMPLOYEE.

y, IF PARTS-ON-HAND < REQUIRED-NUMBER AND STANDARD-ORDER
NULL THEN GENERATE ORDER.

5. IF PARTS-ON-HAND <« REQUIRED-NUMBER AND STANDARD-ORDER
= NULL THEN SOLICIT USER "SPECIFY NUMBER OF" parts-name
"TO ORDER" AND GENERATE ORDER.

6. IF VALUE OF DEPT-NO OF EMPLOYEE REQUESTED THEN COPY
VALUE FROM DEPT-NO OF EMPLOYEE'S DEPARTMENT.

7. IF VALUE OF DEPT-NO OF DEPENDENT REQUESTED THEN COPY
VALUE FROM DEPT-NO OF RESPONSIBLE EMPLOYEE.

8. IF VALUE OF TOTAL-SALARY OF DEPARTMENT REQUESTED THEN
CALL PROCEDURE SALARY-SUM(INDIVIDUAL-SALARY OoF
EMPLOYEES).

Actual DDL syntax for rules may be in the form of stand-alone
statements. (This is the case for rule 1 as declared in the RIM
DBMS). Or, DDL syntax for rules may be embedded as phrases in
other declarations. (This is the case for rules 1 as declared in
the IPIP and SQL DBMSs and for rules 2 and 3 as declared in
IPIP). In some DBMSs (e.g. CODASYL [2] compliant systems) rules
are specified throughout in the form (again in pseudo DDL) "ON

EVENT event-specification PROCEDURE procedure-name". In RIM
these declarations are called rules. In INGRESS they are called
triggers. In other systems they are called assertions or ON
clauses.

(It might be noted that the condition part of rules 1 through 5
are expressed in terms of events such as "if the value of DEPT-NO
changes". This event-oriented syntax is sometimes used with the
procedural attachment mechanism of frames (see Section 3.3). The

-6-

condition part might be phrased in a more pure but equivalent,
rule-oriented syntax such as "if value to be posted of DEPT-NO
Zcurrent value of DEPT-NO". Similiarly retrieval events can be
expressed in rule-oriented syntax. We leave it to the reader to
made this translation).

Rule 1 above is an example of a constraint which is enforced by
the DBMS to ensure that each person has a unique identification.

Rules 2 and 3 provide for propagation by the system. of externally
specified modifications to the data base. If for example,
somebody changes the value of DEPT-NO of the sales department
from 12 to 13, then rule 2 would be fired to change DEPT-NO of
all employees of the sales department from 12 to 13. These
modifications to the data base would repeatedly fire rule 3 which
would change DEPT-NO of the dependents of these employees from 12
to 13. CODASYL specifications (1973) [3] provide for this
through its ACTUAL SOURCE construct for attribute declaration.
IPIP and CODASYL compliant systems provides for DDL specification
of propagation of attribute modification and of record/row
deletion. Chained firing of rules may occur in either case.

Rules 4 and 5 specify for an inventory data base what to do when
a particular part falls below a specified minimum. REQUIRED-
NUMBER and STANDARD-ORDER are attributes of the PART record.
Their values may vary from part to part, or perhaps, a value for
STANDARD-ORDER might not be specified (i.e., STANDARD-ORDER =
NULL). So for bolt, when PARTS-ON-HAND falls below 1000, " then
rule 4 might be triggered to automatically initiate an order for
100 bolts. On the other hand, for fender when PARTS-ON-HAND falls
below 100, rule 5 might be triggered, in which case, the user
would be asked to specify how many fenders to order, and when he
responds with 7, the system would generate a corresponding order.
"GENERATE ORDER" might trigger execution of a procedure which
prepares an order. The user solicitation might be implemented as
part of the procedure. Rule 5 could be modified to advise the
user to manually issue an order by changing the action part to
DISPLAY "PARTS-ON-HAND FOR" part-name "BELOW REQUIRED NUMBER".

Rules 6 and 7 provide computation of the value of an attribute.
If the value of DEPT-NO of an employee is requested then rule 6
would be fired. If the value of DEPT-NO of a dependent is
requested, then rule 7 would be fired, which would in turn cause
the firing of rule 6. CODASYL specifications (1973) [3] provide
for this through its VIRTUAL SOURCE construct for attributes
declaration.

Rule 8 calls data base procedure SALARY-SUM which fetches
EMPLOYEE records for the department and sums over the INDIVIDUAL-
SALARY attribute contained therein. CODASYL specifications
(1973) provide for this through its VIRTUAL RESULT construect for
attribute declaration. The ACTUAL RESULT construct can be used
to specify that SALARY-SUM should be called to compute TOTAL-

-7-

SALARY of DEPARTMENT whenever an INDIVIDUAL-SALARY attribute in
an EMPLOYEE record changes.

The rules capability of DBMSs can be extended to include the
general rules capability supported by expert systems. Additional
rules represent additional knowledge about the domain of
expertise. The general capability provides for the declaration
of additional classes of conditions and actions.

A CODASYL compliant DBMS provides for the declaration of entities
(as records), attributes and relationships (as sets). (IPIP,
which supports both the network and relational data models
provides for the declaration of entities (as records or
relations), attributes and relationships (as sets or foreign
keys).

For purposes of upward compatibility, the DDL of such a DBMS
might be extended to provide for entities, attributes,
relationships, and rules. Consider the example (again in pseudo
DDL) concerning parts inventory that is illustrated in Figure
3.1-1. :

RECORD: PART

ATTRIBUTES: PART-NO, PARTS-ON-HAND,
REQUIRED-NUMBER, STANDARD ORDER

RECORD: ASSEMBLY
ATTRIBUTES: C-A-PART-NO, C-I-A-PART-NO, QUANTITY
RELATIONSHIP: CONTAINS-ASSEMBLY

BETWEEN PART AND ASSEMBLY RECORDS
DETERMINED BY PART.PART-NO = ASSEMBLY.C-A-PART-NO

RELATIONSHIP: CONTAINED-IN-ASSEMBLY
BETWEEN PART AND ASSEMBLY RECORDS
DETERMINED BY PART.PART-NO = ASSEMBLY.C-I-A-PART-NO
RULE: CONTAINS-PART
IF P1 CONTAINS-ASSEMBLY A1
AND P2 CONTAINED-IN-ASSEMBLY A1
THEN P1 CONTAINS-PART P2
RULE: CONTAINED-IN-PART

IF THE P1 CONTAINS-PART P2
THEN P2 CONTAINED-IN-PART P1

Figure 3.1-1 - Parts Explosion Schema Containing Declarations of
Records Attributes, Relationships, and Rules

This 1is the classical network representation of the parts
explosion application, and is illustrated in the data structure
diagram of Figure 3.1-2.

PART PART-NO, PARTS-ON-HAND,
REQUIRED-NO, STANDARD-ORDER
CONTAINS-ASSEMBLY+ + CONTAINED-IN-ASSEMBLY
ASSEMBLY C-A-PART-NO, C-I-A-PART-NO,
QUANTITY

Figure 3.1-2 Data Structure for Parts Explosion

This model provides for a many-to-many relationship between parts
in that:

. One part may contain many parts
One part may be contained in many parts

The QUANTITY attribute of assembly notes how many subparts are
contained in a superpart.

The record-relationship occurrence diagram of Figure 3.1-3

illustrates the data structure as applied to the part wheel and
some of the parts contained in it.

-10-

(Super Parts)(WHEEL

C-A

ASSEMBLY

(groupings of

Sub Parts) C-I-A C-I-A C-I-A

PART RECORDS

(Sub Parts) (SPOKE <::E§E::> (::E?E::)

Figure 3.1-3 PART RECORDS

This wheel (as represented by a PART record) contains the three
assemblies shown and therefore 4 spokes, 1 hub, and 1 nut. A
different kind of wheel (as represented by another PART record)
might contain a different number of spokes, hubs, or nuts (as
represented by the same PART records but linked to the second
wheel by three additional ASSEMBLY records).

-11=

Both the relationships and the rules of Figure 3.1-1 express
knowledge about parts and assemblies. It is important that the
mechanisms which draw inferences over the one type of knowledge
are aware of the other, and vice versa. Otherwise there may be
knowledge gaps or inconsistencies.

To 1illustrate this point, consider that the two relationships
could be expressed as rules as follows:

RULE: CONTAINS-ASSEMBLY
IF P.PART-NO = ASSEMBLY.C-A-PART-NO
THEN P CONTAINS-ASSEMBLY A

RULE: CONTAINED-IN-ASSEMBLY
IF P.PART-NO = ASSEMBLY.C-I-A-PART-NO
THEN P CONTAINED-IN-ASSEMBLY A

It would be easy to overlook this commonality in the two
representations of knowledge.

The commonality between relationships and rules as demonstrated
in the preceeding allows for a common encoding of the two types
of declaration through compilation so that an inference engine
from an existing expert system (as modified to access the data
base) might be used to implement the KBMS inference mechanism.

Another implication of this commonality is that for the sake of
uniformity all rules, including those supported by current DBMS
technology, could be expressed using the production-rule
syntactical forn. The preceding paragraphs suggest how
relationships might be expressed. An earlier aside suggested how
events such as update and retrieval could be expressed on the
condition side of a rule. This capability would require
visibility of registers containing values to be posted and type
of command to be executed.

A middle course for user interface would be to continue to
support existing DDL, syntactical constructs, and to support as
well corresponding declarations as rules.

For example, production rules might be stored upon compilation in
the data dictionary using one or more of the access methods (e.g.
hash, index, index-sequential) provided by the DBMS (assuming
that the data dictionary, as is not uncommon, is itself
implemented as a data base).

Particular access methods might be specified for particular
classes of rules depending on how frequently these rules are
invoked and required response times for inferencing. (Some
DBMS's support main memory-oriented access methods for very high
performance. Such an access method could be added to a DBMS if
necessary to support very fast inferencing). Traditional DBMS

~12-

access methods are 1likely to be very useful for retrieval of
knowledge for future expert systems which must accommodate very
large numbers of rules. Use of DBMS facilities for storing
knowledge should facilitate knowledge management capabilities
paralleling traditional DBMS capabilities such as concurrency
control, views, etc.

There a variety of physical data structures (e.g. embedded
pointers, pointer arrays, indexes) used to implement occurrences
of relationships on the data base. Sometimes a DBMS offers more
than one of these, so that efficient processing of relationships
can be achieved for various access patterns. The correspondence
between relationships and rules suggests that these data
structures would be applicable to supporting at least a subclass
of production rules to achieve efficient inferencing for various
reasoning patterns.

An important issue in production rule systems 1is how to
efficiently identify at any given time those rules which are
candidates for firing. DBMS technology has evolved efficient
mechanisms for rule identification for the class of rules that it
supports. These mechanisms might be used in KBMS implementation.
These mechanisms include embedding rule identifiers in the data
dictionary description of records, attributes, and relationships.
Use of these mechanisms would involve tight integration of the
implementations of AI and DBMS capabilities.The KBMS inference
mechanism might be tightly integrated with the query/view
processing mechanism of the DBMS. (Query and view processing are
nearly equivalent in some DBMSs). The query optimizer of some
DBMSs decomposes a complex query into a tree of subqueries.
Execution of these subqueries may be sequenced from the root to
the leaves or vice versa depending on the query and the
description and the population of the data base. Consider, for
example the following query:

WHICH PARTS ARE CONTAINED IN WHEEL.

Suppose that only the CONTAINS-ASSEMBLY and CONTAINED-IN-ASSEMBLY
rules declared above are available. Then the query could be
satisfied by applying first the rule (subquery) CONTAINS-ASSEMBLY
to wheel and the rule (subquery) CONTAINED-IN-ASSEMBLY to the
resulting assemblies or it could be satisfied by applying first
CONTAINED-IN-ASSEMBLY to a part (spoke or hub or nut or fender or
axel, etc.) and then applying CONTAINS-ASSEMBLY to the resulting
assemblies. These strategies for execution of the query are
closely related to if not actual examples of the production rule
concepts of forward and backward chaining. Some DBMSs provide
this limited "forward and backward chaining" mechanism today. The
mechanisms used by these DBMSs could be incorporated in the
implementation of a general inferencing mechanism and/or the
general implementation could be used to greatly enhance current
query optimization technology. (The corresponding term for a KBMS
might well be inference optimization).

-13-

Knowledge declared as DBMS relationships becomes more involved as
constraints on these relationships are taken into account.
Expression of these constraints as rules would involve augmenting
the conditional and action sides of those rules corresponding to
relationships and/or specifying additional rules.

IPIP supports the propagation of value modification for
attributes and record deletion via relationships. Thus
modification of the value of a PART-NO of PART (see Figure 3.1-1)
would result in system-generated modification of C-A-PART-NO in
numerous ASSEMBLY records via the CONTAINS-ASSEMBLY relationship.
This modification might propagate back via the CONTAINS-ASSEMBLY
relationship to PART-NO in other PART records, and then back to
C-A-PART-NO in ASSEMBLY records, ete. (The IPIP value
modification capability is a generalization of CODASYL's). Or
the attribute modification might be propagated through other
relationships in a fashion analgous to rules 2 and 3 above.
Similiarly deletion of a single record could propagate in complex
ways to various records which are directly or indirectly related
to it.

The particular path of migration, and hence the sequence in which
rules are fired, depend on whether attributes which determine
relationships are null or have a value.

There may be many rules corresponding to DBMS-declared
constraints other than those on relationships.

DBMS applications may involve hundreds of record types and
relationships. Multiple constraints may be declared for a single
record type or relationship, and multiple relationships may be

declared between a pair or record types. Thus current DBMS
technology does accommodate the equivalent of rather large bases
of rules which may be fired in a myriad of patterns. Issues

concerning efficient rule retrieval and in the optimization of
the sequencing of rule firing (e.g. forward and backward
chaining) are nontrivial even for existing DBMS technology.

A general rule capability for a KBMS should provide for reference
to both data base and non data base information. This should
include as noted above reference to registers containing values
to be posted and indicators specifying the type of operation to
be performed (update, retrieval, ete.). A general rule
capability should provide for specification complex boolean
conditions and for composition of rules.

CODASYL compliant DDL does not allow, for example, rules such as
CONTAINS-PARTS which are the composition of other rules
(CONTAINS-ASSEMBLY and CONTAINED-IN-ASSEMBLY in this case). There
are some instances of rule composition in DBMS technology. A
general capability should take these into account. For

-14-

example, a nested SQL query can specify nested join operations.
This corresponds to a rule which composes rules corresponding to
the relationships discussed above. And, IPIP provides the
STRUCTURE construct which defines an aggregation of possibly many
records which may be related by many relationships. A record or
relation may be mapped to a structure. Update or retrieval of
-such a "structure-defined" record results in the traversal of
many relationships. When these relationships are considered 1in
terms of corresponding rules, then a structure declaration
corresponds to a rule over one or more other rules, and execution
of a rule corresponds to the firing of these underlying rules.
Firing of the rules corresponding to these relationships are
conditional based on the null or values state of attributes which
govern the relationship. A CASE phrase (not currently
implemented) provides for conditional firing based on conditions
on values of these attributes.

Figure 3.1-4 illustrates the declaration of two structures. (Note
that the declaration of one incorporates the declaration of the
other). Figure 3.1-5 illustrates an occurrence of the structure
as determined by an occurrence of the root record. Figure 3.1-6
illustrates the mapping between a structure-defined record and
corresponding records within the structure.

Certainty factors are very common in Production Rule expert
systems and should be accommodated by the knowledge declaration
capability of the KBMS. Within the definition of a production
rule the certainty factor could be specified in the typical -1 to
+1 range of values (see Figure 3.1-7). Range checking would
automatically be applied to these values as rules were entered
into the system. Only the right side (THEN portion) of the rule
can have a certainty factor and if none is specified then
certainty is assumed to be +1.0 which is interpreted as absolute
certainty that the conclusion is true. Negative numbers indicate
the degree of certainty that the conclusion is false. In either
case the computations surrounding these rules are as follows:

1. The IF portion is first calculated by applying AND
operators then OR's where certainty of X AND Y is
simply MIN (X, Y) and the certainty of X OR Y is MAX
(X, Y).

2. The certainty of each conclusion is the THEN portion is
calculated by multiplying the certainty of the
conditions (as found in 1) by the conclusion's
certainty.

The conclusions along with their associated certainties can be
used to infer other conclusions but when the certainty of a
conclusion is at or near zero then it is dropped since zero is
interpreted as "I don't know."

Figure 3.1=7 illustrates a production sysem incorporating
certainty factors in its rules.

-15-

ani3
aN3
Q Ol €4 NHHL
dWOD IINIHHNII0 I 0L ZH NHHL
aN3a aN3
$ 3HNLINYILS O1 Y NHHL 434 3IINIHHNII08 Ol L NHHL
3 1004 v 1004
1 3HNLONYLS S JIHNLONYLS
A z |la
£y
2 lawoa | A |9 M 434 | X | 8

] ,

S 81m2NNS Jo J00Yy A nNjix|v

14

~—

1 8i1n1danAns Jo ooy n 3

Figure 3.1-4 Declarations of Structures and of StructureT

in Terms of Structures

-16-~

>
R
™M
3
™
U]
>.J ~
9 S
rN‘
>»
N
L]
[x]
~ e«
> N
~
~N
[} o~
A S
-
>
-
~
™
0@
-
~
-
©

2

At

Figure 3.1-5 An Occurence of Structures

-17-

dWO0J

(€) Q NI A WOHd €A
(Z) a NI A Wwoud zA
(L) anNi Awoud 1A
(€) D NI Z Wou4 £2
(2) 2 N1 Z Wwou 4 z
(L)O NI ZWou4d 12
(Z) 8 NI M WOHS ZMm
(L) 8 NI M WOoHd LM
V NI A WOUd A
V NI X NOoHd X
S 3HNLONYLS WOYL 4 NOILYI3Y

434 | X | 9 A X
- ONIddVYW
L =434 lNgiyLly

M AlX]|4d

Figure 3.1-6 Mapping Entity Type F from Structures

18-

IF EMPLOYEE. MARITAL-STATUS = MARRIED

AND EMPLOYEE. YEARS-OF-SERVICE > 3
THEN STABLE (+0.6)

IF EMPLOYEE. YEARS-OF-SERVICE > 20
THEN STABLE (+0.9)

IF EMPLOYEE. YEARS-OF-SERVICE > 1
THEN STABLE (-0.5)

IF EMPLOYEE. STABLE

AND EMPLOYEE. AGE > 40

THEN MANAGEMENT-MATERIAL (+0.6)

IF EMPLOYEE. YEARS-OF-SERVICE > 10
OR EMPLOYEE. YEARS-OF-SERVICE > 16
THEN TECHNICAL (+0.9)

IF MANAGEMENT-MATERIAL

OR STABLE

AND EMPLOYEE. YEARS-OF-SERVICE > 30
OR TECHNICAL

THEN RETENTION-STATUS

Figure 3.1-7 - Production System Incorporating Certainty Factors

-19-

3.2 SEMANTIC NETS

A semantic network has the form of a directed graph composed of
nodes (representing objects, concepts or situations) and arcs
(representing the relationships between these entities). A
simple example of a semantic net is given by:

ENGINEER

DESIGNS DESIGNS

IS-PART-OF IS-PART-OF

SPAR ————Jp» WING ———] AIRPLANE

Figure 3.2-1

One approach to implementing semantic networks in CODASYL-based
systems is to map nodes and arcs in a network to schema
declarations of record types and set types on a one-to-one basis,
respectively. This straight forward mapping of semantic networks
to schema declarations requires multiple declarations of sets
with the same name (e.g. IS-PART-OF in the above example), which
is not permissable.

One might take a different approach using the parts explosion
schema of Figure 3.1-1 (see also Figure 3.1-2). In this
approach, spars, wings, and airplanes would be represented by
occurrences of the PART record. This gives rise to the question
of whether instances of PART record represent abstract concepts
(e.g. spar, wing and record) or instances of these (e.g., 727,
737, 747), or whether instances of PART record used for both
purposes.

The attributes for wing as an abstract object are different from
those particular instantiations of it. For example PARTS-ON-HAND
is relevant to actual parts, but not to parts in the abstract.
Indeed, an IDEAL-PART record might contain only a single field
which contains values such as the text string "WING". So it
seems that a single PART record type will not suffice for both
purposes. Let us then introduce an IDEAL-PART record type,
occurrences of which represent parts in the abstract. This could
be done by mirroring the parts explosion declarations schema of
Figure 3.1-2 to have record types IDEAL-PART and IDEAL-ASSEMBLY
and set types IDEAL-CONTAINS-ASSEMBLY and IDEAL-CONTAINED-IN-
ASSEMBLY (see Figure 3.2-2). These declarations provide for

-20-

modeling relationships between parts in the abstract. The
resulting network of record occurrences on the database would,
however, 1include assembly records which have no corresponding
nodes in the original semantic network.

It 1is not clear, though, whether the assembly records are
extraneous to the modeling problem at hand, or whether the
semantic network has failed to model part of the problen. The
QUANTITY attribute of the IDEAL-ASSEMBLY record specifies how
many subparts of a particular part are contained in a super part
(e.g. 4 bolts in a wheel, 6 bolts in a cam). The semantic
network does not seem to accommodate this knowledge.

Proceeding with the PART/IDEAL-PART, ASSEMBLY/IDEAL-ASSEMBLY
schema, it remains then to associate parts in the abstract with
actual parts. To do this an IS-A set with owner IDEAL-PART and
member PART is declared (see Figure 3.2-2). The IS-A
relationship is based on a part type identifier included as
attributes in both record types. Thus an occurrence of the IS-A
set would relate an abstract part (e.g. airplane) to each
instance of it (e.g. 727, 737, 747).

It seems that the inference engine would have to distinguish
between records representing abstract and actual parts. The DDL
would have to be extended to provide for the declaration
supporting this. The CODASYL record declaration is a typing
construct; that 1is it represents a collection of like objects.
The IDEAL-PART record also plays a typing role in this approach.
The difference between these typing functions bears further
investigation. '

The need for IS-A relationships between other IDEAL-RECORD/RECORD
pairs will occur in this approach. This leads again (with the
strategy of one-to-one mapping of arcs to sets) to multiple sets
with the same name which is not permissable. The alternative is
to realize that IS-A is a type of relationship between nodes, and
not the name of arcs in the semantic network. Constructs could be
added to CODASYL set syntax for typing (e.g., IS-A, KIND-OF,
ete.). Arcs in the network would be mapped to uniquely named
sets which would be subtyped as in the network.

-21-

IDEAL- IS-A PART

PART *

IDEAL- IDEAL- CONTAINS- CONTAINED-IN-
CONTAINS- CONTAINED- ASSEMBLY ASSEMBLY
ASSEMBLY + IN-ASSEMBLY +
IDEAL- ASSEMBLY
ASSEMBLY

Figure 3.2-2 CODASYL Data Structure Diagram for Realizing

Semantic Network of Figure 3.2-1

Implementation of semantic networks via the relational data model
brings up the same fundamental issues of representing parts in
the abstract, actual parts, and the 1linkage and distinction
between the two. .

The rules for inferencing over a semantic network depend upon the
nature of the relations (arcs) that are in the net. In addition,
it is important that the system understand the proper rules for
composition of relationships; i.e., given

"How is A related to C? For example, we might want the IS-PART-OF
relationship to be transitive and for the system to be able to
infer that SPAR is also part of AIRPLANE:

-22-

IS-PART-OF IS-PART-OF
SPAR —=-mmmmmme > WING =mmmm—meee > AIRPLANE ==>

SPAR == > AIRPLANE

On the other hand, given

FATHER FATHER
John ~————ee-o > Mike ceccac-- > Susan

we certainly -do not want the system to treat this relation
transitively, in fact we would probably want to give the system
an inference rule that would result in the system deducing that
John is Susan's grandfather.

Similarly, given

BROTHER FATHER
Mark =--—eecace-- > Mike —==ce—ec--- > Susan

We would want the system to infer that Mark is Susan's
uncle.There is no commonly accepted method in semantic network
technology for specifying how to compose relationships. Such
rules are required for an operational system, and if semantic
networks are to be implemented in terms of DBMS construct as
outlined above, then the DDL must be extended to support the
declaration of these rules.

It should be noted that the above approaches to implementing
semantic networks in terms of DBMS constructs represent initial
research. The specific approach discussed above has not been
thoroughly checked out for completeness and consistency.
Efficiency aspects of that approach have not been investigated
thoroughly, but mirror accessing of PART/ASSEMBLY and IDEAL-
PART/IDEAL-ASSEMBLY records to deal with actual parts and
knowledge about them seems to pose very serious performance
problems.

Another 1line of investigation that should be pursued is that of
implementing DBMS constructs (e.g. records and sets) in terms of
semantic networks. This should provide additional insights as to
the integration of the two technologies, and may even lead to
refinements of the approaches discussed above.

3.3 FRAMES
In simple terms, a frame can be viewed as a sterotypical
representation of any object concept. A concept is represented

as a data structure with a c¢oncept name, slots, links, values,
ete., much the way a record description is declared in a data

-23-

base schema. Frames are typically more generalized structures
than data base record structures but have many similarities. An
example of a chair frame may appear as follows:

name: CHAIR

links: a-type-of FURNITURE

slots: number-of-legs (default 4)
material (default WOOD)

A rough correlation betwen frame and data base terminologies can
be made as follows:

FRAMES ’ DBMS
Concept/Frame Record type/Relation
Frame instantiation Record occurence/Row
Link Inter-record relationship for
generalization
Slot Attribute
(can contain) (can contain)
value/null value/null
concept name -
concept instantiation inter-record relationship for
aggregation
procedure -
reference to procedure reference to procedure

Each of the DBMS capabilities seems to be a proper subset of the
coresponding frame capability. For example, data base procedures
are usually associated with attributes for all occurences of a
record type, whereas in frames, procedures are attached on an
instantiation basis. Thus the same procedures would be
associated with attribute X for all occurrences of record A, for
example, but might vary for slot Y for instantiations of frame B.

Similarly, attributes are normally associated with all
occurrences of a record type (though they may be valued or null),
whereas a particular slot may or may not be associated with an
instantiation of a frame. Frame instantiations may therefore
vary radically in structure from each other, whereas record
occurrences (at least at the logical 1level) are uniform in
structure.

Another difference is the generality with which one frame can be
related to other frames. One way to accomplish this, is by
stating a link type in the frame concept declaration, as in the
example where a CHAIR is a-type-of FURNITURE. In this case all
instantiations of the CHAIR frame will inherit the properties of
the FURNITURE frame. Another way 1is by virtue of a value
assigned to a slot in a frame instantiation such as, the material
of the chair is WOOD. Here, each instantiation may or may not
inherit the properties of some other frame by virtue of the value
assigned to the slot. Still another method would be to relate
one instantiation of au frame ~to some other
-24_

instantiation. This could be used to express the relationships
in the parts explosion example in figure 3.1-1. These are
equivalent to inter-record relationships used for aggregation in
DBMS.

DBMS technology, however, exceeds frames technology in areas such
as data/sharing (in the sense of concurrency control) and views
of data.

DBMS technology such as multiple access methods and concurrency
control can probably be applied to frames technology at least to
support that subset which corresponds to DBMS modeling
capabilities. On the other hand, frames technology could be used
to extend DBMS technology.

3.4 DEMONS AND PROCEDURAL ATTACHMENT

Demons and triggers, termed procedural attachment, provide
immediate execution of object code when a specific condition is
reached in the knowledge base. Procedural attachment are as used
in frames described in section 2.3 FRAMES. Procedural attachment
may be wused with any knowledge representation formalism.
However, if used with well defined mathematical 1logics 1like
relational or predicate calculus, it may invalidate their precise
definitions.

Procedural attachment could be developed from the DBMS concepts
of computed attributes and propogated actions. See the pseudo-
DDL DBMS rules in section 2.1 PRODUCTION RULES. Rule 4 triggers
the generation of an order when parts-on-hand fall below the
REQUIRED NUMBER. The knowledge base applications require the
same capability. The type of triggers in a knowledge base are
for supplying defaults, starting procedures when a value 1is
modified, or when a value is placed or needed. The function of
these procedures would vary from value computation to searching
association links of the knowledge base for an inherited value.
Two extensions to the DBMS are required. First an interactive
procedure definition <capability whieh will allow both the
knowledge application designer and the application to generate
object code. Secondly the object of the procedure must be
present in computer memory when the procedure is needed.

3.5 MULTIPLE KNOWLEDGE REPRESENTATIONS

In order for a general purpose KBMS to serve a wide user base, it
should be capable of handling as many different Kknowledge
representations as possible. Ideally, the user should be able
to specify frames, semantic nets, production rules, first-order
logic, or even some mixture of these according to the needs of
each subdomain of the problem. Then when knowledge is declared
by the user, the KBMS would select the appropriate representation
for its implementation.

-25-

Perhaps the most difficult problem associated with supporting
multiple, interacting knowledge representations is the creation
of an inference mechanism which could handle a nonhomogeneous
knowledge base. This problem is analogous in some respects to the
support of multiple physical structures by present day DBMS's. In
this case the DBMS must be able to search various types of data
structures, and extract and integrate data to execute a single
query. Just as the modern DBMS insulates .the user from access
methods, the KBMS should insulate the end user from knowledge
representations. Just as data administrators are responsible for
specifying access methods, so should knowledge administrators be
charged with associated knowledge domains with knowledge
representations.

One approach to supporting multiple knowledge representations
would be to develop a common underlying knowledge representation
and to develop mappings between it and the various other
representations. This approach bears some resemblance to the
natural language understanding problem which attempts to find an
internal representation for the underlying meaning of a sentence
or paragraph. For much the same reasons as we want to find a
universal representation for Kknowledge. A leading natural
language understanding researcher, Roger Schank, has found ways
to map complex context dependent semantic relationships into a
form known as conceptual dependency. This process only operates
on restricted problem domains using a knowledge based system to
perform the mapping.

26—

4.0 PERSPECTIVES OF KNOWLEDGE

Just as DBMS technology supports views of a data base, KBMS
technology should support perspectives of a knowledge base. The
usual DBMS capabilities for creating views (subschemas) of data
(facts) should be subsumed by KBMS technology. Thus for example,
a perspective for the schema of Figure 3.1-1 might contain only a
projection (selected attributes) of the PART record, leaving out
the ASSEMBLY record. This might be done for simplification of
the user's view or for security reasons.

Perspectives should provide views of knowlege as well as of
facts. So in the PARTS example, the perspective should provide
rules (knowledge) dealing with PART, but not rules dealing with
ASSEMBLY, since the user is not aware of the latter. Explanations
for users of a perspective should be phrased in terms of the
rules of the perspective, rather than those of the underlying
schema. An explanation in terms of the underlying rules
(knowledge) would be no explanation at all for the user of the
perspective.

Rules (knowledge) of a perspective must be derived from and be
consistent with underlying rules. Conversely, certain knowledge
declared in the schema which is applicable to facts represented
in the perspective must be represented in the perspective.
Anything less will leave the user uninformed with respect to the
essential semantics of his perspective of the knowledge base.

Some underlying rules (knowledge) might not be essential, though

applicable, to facts in the view. In general, rules necessary to
understand update are essential, while rules pertaining to
retrieval and reflective deductions are not. For example, a

perspective might make available facts regarding employee salary,
years of service, etc. but not make available underlying rules
regarding salary adjustment, promotion and retention policies
based on these facts. On the other hand, if the view provides
for update of employee salary, the rules concerning constraints
on salary must be provided.

CODASYL subschemas provide for the inclusion of relationship
delcarations in a subschema. As noted in Section 3.1, this
amounts to inclusion of rules in the subschemas.

Consider the mapping in Figure 3.1-6 between record F and the
underlying structures. In this case, rules should be included in
the perspective to reflect the knowledge represented by the
relationships in the structure (see Figure 3.1-4), Rules in the
perspective would be formulated in terms of attributes of
record F, and would document update interdependencies between
these attributes.

-27-

Bibliography

Rich, Elaine, Artificial Intelligence, McGraw-Hill, 1983.

CODASYL Data Description Language Committee Journal
Development, January 1978.

CODASYL Data Description Language Committee Journal
Development, June 1983,

_28-

of

of

